
JVC

SERVICE MANUAL

DVD VIDEO PLAYER

XV-S60BK XV-S62SL / XV-S65GD

Area Suffix (XV-S60BK)

J ----- U.S.A. C ----- Canada

Area Suffix (XV-S62SL/XV-S65GD)

J ----- U.S.A.

AV COMPU LINK

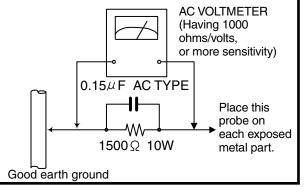
Each difference point

Model	Body color
XV-S60BK	Black
XV-S62SL	Silver
XV-S65GD	Gold

Contents

Safety precautions 1-2	Disassembly method 1-6
Preventing static electricity 1-3	Adjustment method 1-15
Importance admistering	Troubleshooting 1-19
point on the safety 1-4	Description of major ICs 1-23
Precautions for service 1-5	Glossary of term and abbreviations 1-42

Safety Precautions -


- 1. This design of this product contains special hardware and many circuits and components specially for safety purposes. For continued protection, no changes should be made to the original design unless authorized in writing by the manufacturer. Replacement parts must be identical to those used in the original circuits. Services should be performed by qualified personnel only.
- 2. Alterations of the design or circuitry of the product should not be made. Any design alterations of the product should not be made. Any design alterations or additions will void the warranty and will further relieve the manufacture of responsibility for personal injury or property damage resulting therefrom.
- 3. Many electrical and mechanical parts in the products have special safety-related characteristics. These characteristics are often not evident from visual inspection nor can the protection afforded by them necessarily be obtained by using replacement components rated for higher voltage, wattage, etc. Replacement parts which have these special safety characteristics are identified in the Parts List of Service Manual. Electrical components having such features are identified by shading on the schematics and by (1) on the Parts List in the Service Manual. The use of a substitute replacement which does not have the same safety characteristics as the recommended replacement parts shown in the Parts List of Service Manual may create shock, fire, or other hazards.
- 4. The leads in the products are routed and dressed with ties, clamps, tubings, barriers and the like to be separated from live parts, high temperature parts, moving parts and/or sharp edges for the prevention of electric shock and fire hazard. When service is required, the original lead routing and dress should be observed, and it should be confirmed that they have been returned to normal, after reassembling.
- 5. Leakage current check (Electrical shock hazard testing) After reassembling the product, always perform an isolation check on the exposed metal parts of the product (antenna terminals, knobs, metal cabinet, screw heads, headphone jack, control shafts, etc.) to be sure the product is safe to operate without danger of electrical shock. Do not use a line isolation transformer during this check.
 - ◆ Plug the AC line cord directly into the AC outlet. Using a "Leakage Current Tester", measure the leakage current from each exposed metal parts of the cabinet, particularly any exposed metal part having a return path to the chassis, to a known good earth ground. Any leakage current must not exceed 0.5mA AC (r.m.s.)
 - Alternate check method

Plug the AC line cord directly into the AC outlet. Use an AC voltmeter having, 1,000 ohms per volt or more sensitivity in the following manner. Connect a $1,500\Omega$ 10W resistor paralleled by

a 0.15 $\mu {\rm F}$ AC-type capacitor between an exposed metal part and a known good earth ground.

Measure the AC voltage across the resistor with the AC voltmeter.

Move the resistor connection to each exposed metal part, particularly any exposed metal part having a return path to the chassis, and measure the AC voltage across the resistor. Now, reverse the plug in the AC outlet and repeat each measurement. voltage measured Any must not exceed 0.75 V AC (r.m.s.). This corresponds to 0.5

Warning

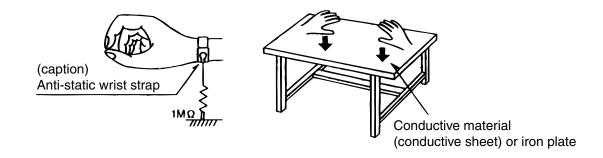
- 1. This equipment has been designed and manufactured to meet international safety standards.
- 2. It is the legal responsibility of the repairer to ensure that these safety standards are maintained.
- 3. Repairs must be made in accordance with the relevant safety standards.
- 4. It is essential that safety critical components are replaced by approved parts.
- 5. If mains voltage selector is provided, check setting for local voltage.

<u>AUTION</u> Burrs formed during molding may be left over on some parts of the chassis. Therefore, pay attention to such burrs in the case of preforming repair of this system.

Preventing static electricity

Electrostatic discharge (ESD), which occurs when static electricity stored in the body, fabric, etc. is discharged, can destroy the laser diode in the traverse unit (optical pickup). Take care to prevent this when performing repairs.

1.1. Grounding to prevent damage by static electricity

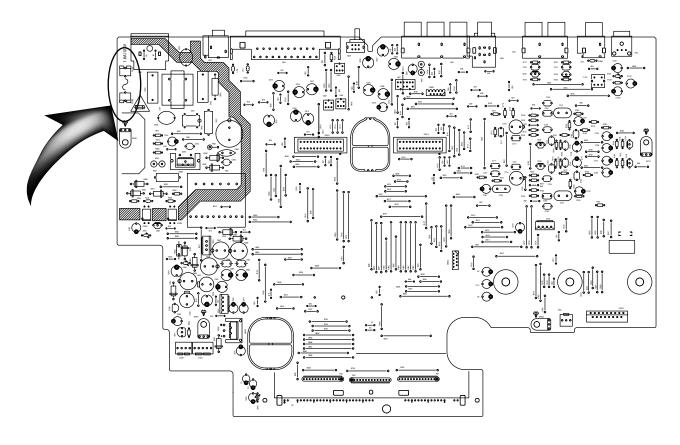

Static electricity in the work area can destroy the optical pickup (laser diode) in devices such as DVD players. Be careful to use proper grounding in the area where repairs are being performed.

1.1.1. Ground the workbench

1. Ground the workbench by laying conductive material (such as a conductive sheet) or an iron plate over it before placing the traverse unit (optical pickup) on it.

1.1.2. Ground yourself

1. Use an anti-static wrist strap to release any static electricity built up in your body.


1.1.3. Handling the optical pickup

- 1. In order to maintain quality during transport and before installation, both sides of the laser diode on the replacement optical pickup are shorted. After replacement, return the shorted parts to their original condition. (Refer to the text.)
- 2. Do not use a tester to check the condition of the laser diode in the optical pickup. The tester's internal power source can easily destroy the laser diode.

1.2. Handling the traverse unit (optical pickup)

- 1. Do not subject the traverse unit (optical pickup) to strong shocks, as it is a sensitive, complex unit.
- 2. Cut off the shorted part of the flexible cable using nippers, etc. after replacing the optical pickup. For specific details, refer to the replacement procedure in the text. Remove the anti-static pin when replacing the traverse unit. Be careful not to take too long a time when attaching it to the connector.
- 3. Handle the flexible cable carefully as it may break when subjected to strong force.
- 4. It is not possible to adjust the semi-fixed resistor that adjusts the laser power. Do not turn it

Importance Admistering point on the Safety

Full Fuse Replacement Marking

Graphic symbol mark (This symbol means fast blow type fuse.)

should be read as follows;

FUSE CAUTION

FOR CONTINUED PROTECTION AGAINST RISK OF FIRE, REPLACE ONLY WITH SAME TYPE AND RATING OF FUSES;

1.6 A / 125 V

Marquage Pour Le Remplacement Complet De Fusible

Le symbole graphique (Ce symbole signifie fusible de type á fusion rapide.)

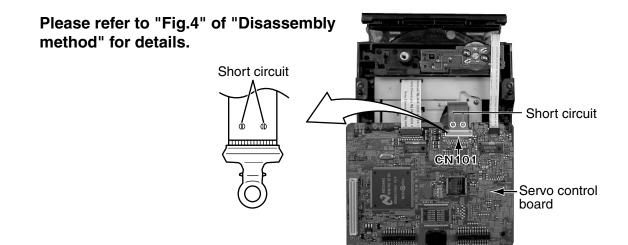
doit être interprété comme suit ;

PRECAUTIONS SUR LES FUSIBLES

POUR UNE PROTECTION CONTINUE CONTRE DES RISQUES D'INCENDIE, REMPLACER SEULEMENT PAR UN FUSIBLE DU MEME TYPE ;

1.6 A / 125 V

Precautions for Service


Handling of Traverse Unit and Laser Pickup

- 1. Do not touch any peripheral element of the pickup or the actuator.
- 2. The traverse unit and the pickup are precision devices and therefore must not be subjected to strong shock.
- 3. Do not use a tester to examine the laser diode. (The diode can easily be destroyed by the internal power supply of the tester.)
- 4. To replace the traverse unit, pull out the metal short pin for protection from charging.
- 5. When replacing the pickup, after mounting a new pickup, remove the solder on the short land which is provided at the center of the flexible wire to open the circuit.
- 6. Half-fixed resistors for laser power adjustment are adjusted in pairs at shipment to match the characteristics of the optical block.
 - Do not change the setting of these half-fixed resistors for laser power adjustment.

Destruction of Traverse Unit and Laser Pickup by Static Electricity

Laser diodes are easily destroyed by static electricity charged on clothing or the human body. Before repairing peripheral elements of the traverse unit or pickup, be sure to take the following electrostatic protection:

- 1. Wear an antistatic wrist wrap.
- 2. With a conductive sheet or a steel plate on the workbench on which the traverse unit or the pick up is to be repaired, ground the sheet or the plate.
- 3. After removing the flexible wire from the connector (CN101), short-circuit the flexible wire by the metal clip.
- 4. Short-circuit the laser diode by soldering the land which is provided at the center of the flexible wire for the pickup. After completing the repair, remove the solder to open the circuit.

Disassembly method

<Main body>

■ Removing the top cover (see Fig.1)

- 1. Remove the two screws A attaching the top cover on both sides of the body.
- 2. Remove the three screws **B** attaching the top cover on the back of the body.
- 3. Remove the top cover from the body by lifting the rear part of the top cover.

ATTENTION: Do not break the front panel tab fitted to the top cover.

■ Removing the mechanism assembly (see Fig.2,3)

- * Prior to performing the following procedure, remove the top cover.
- * There is no need to remove the front panel assembly.
- 1. Remove the three screws **C** attaching the mechanism assembly on the bottom chassis.
- 2. The servo control board is removed from the connector CN512 and CN513 connected with the main board respectively.
- 3. Remove the mechanism assembly by lifting the rear part of the mechanism assembly.

■ Removing the servo control board (see Fig.4)

- * Prior to performing the following procedure, remove the top cover and mechanism assembly.
- 1.Disconnect the card wire from connector CN201 and CN202 on the servo control board respectively.
- 2.Disconnect the flexible wire from connector CN101 on the servo control board from pick-up.

ATTENTION

At this time, please extract the wire after short-circuited of two places on the wire in part a with solder. Please remove the solder two places of part a after connecting the wire with CN101 when reassembling.

3. Two places in hook **b** are removed, the servo control board is lifted, and it is removed.

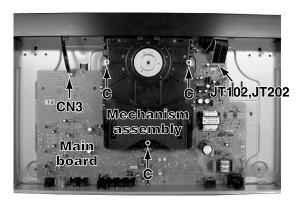
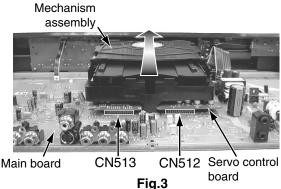



Fig.2

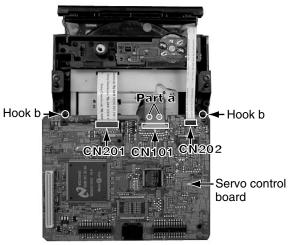
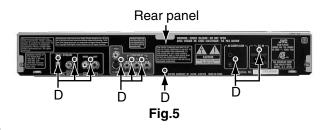
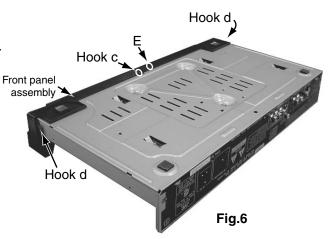


Fig.4

■ Removing the rear panel (see Fig.5)


- *Prior to performing the following procedure, remove the top cover.
- 1.Remove the nine screws **D** attaching the rear panel on the back of the body.


■ Removing the front panel assembly (see Fig.6,7)

- * Prior to performing the following procedure, remove the top cover.
- * There is no need to remove the mechanism assembly.
- 1.Remove the one screw **E** attaching the front panel assembly on the bottom chassis.
- 2.Disconnect the wire from CN3 and JT102,JT202 on the main board respectively.
- 3. Hook **c** and **d** are removed respectively, and the front panel assembly is removed.

■ Removing the main board (see Fig.8)

- * Prior to performing the following procedure, remove the top cover, mechanism assembly and rear panel.
- 1.Disconnect the wire from CN3 and JT102,JT202 on the main board respectively.
- 2.Remove the four screws **F** attaching the main board on the bottom chassis.

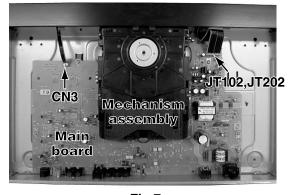
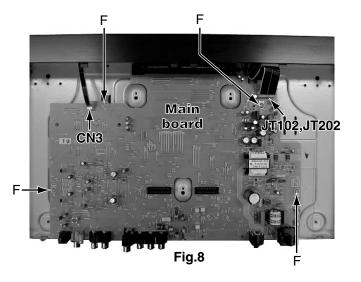



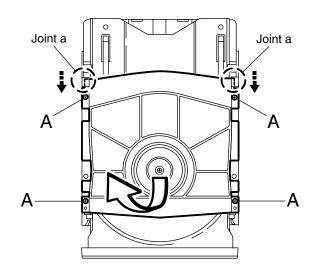
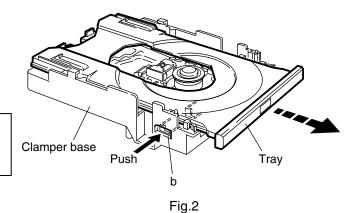
Fig.7

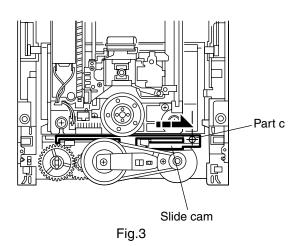
<Loading assembly section>

■ Removing the clamper assembly (See Fig.1)

- Remove the four screws A attaching the clamper assembly.
- 2. Move the clamper in the direction of the arrow to release the two joints **a** on both sides.

ATTENTION: When reattaching, fit the clamper to the two joints **a**.


Fig.1

■ Removing the tray (See Fig.2 and 3)

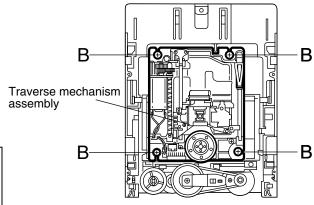
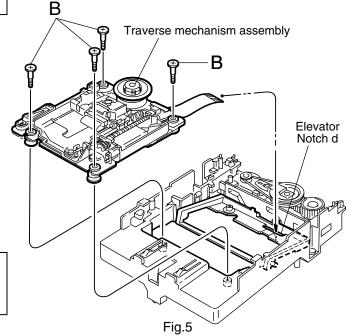
- Prior to performing the following procedure, remove the clamper assembly.
- 1. Push **b** of the slide cam into the slot on the left side of the loading base until it stops.
- 2. Draw out the tray toward the front.

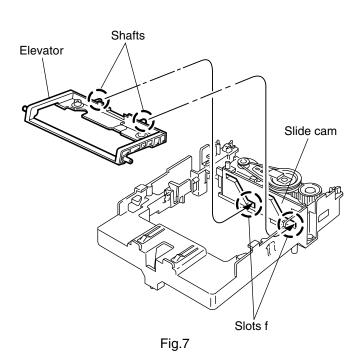
ATTENTION: Before reattaching the tray, slide the part **c** of the slide cam to the right as shown in Fig.3.

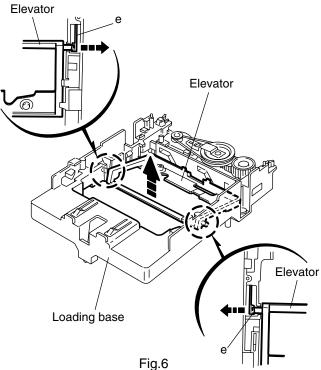
■ Removing the traverse mechanism assembly (See Fig.4 and 5)

- Prior to performing the following procedure, remove the clamper assembly and the tray.
- 1. Remove the four screws **B** attaching the traverse mechanism assembly.

ATTENTION: Before reattaching the traverse mechanism assembly, pass the card wire extending from the spindle motor board through the notch **d** of the elevator.

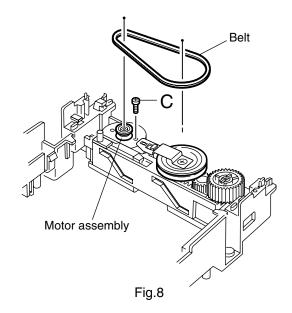




Fig.4



■ Removing the elevator (See Fig.6 and 7)

- Prior to performing the following procedure, remove the clamper assembly, the tray and the traverse mechanism assembly.
- 1. Extend each bar **e** inside of the loading base outward and detach the elevator shaft.


ATTENTION: When reattaching, first fit the two shafts on the front of the elevator to the slots **f** of the slide cam.

■ Removing the motor assembly (See Fig.8 and 9)

- Prior to performing the following procedure, remove the clamper assembly, the tray, the traverse mechanism assembly and the elevator.
- 1. Remove the belt from the pulley.
- 2. Remove the screw **C** attaching the motor assembly.
- 3. Turn over the body and remove the screw **D** attaching the motor assembly.
- 4. Release the two tabs **g** retaining the motor board.

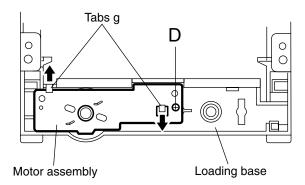


Fig.9

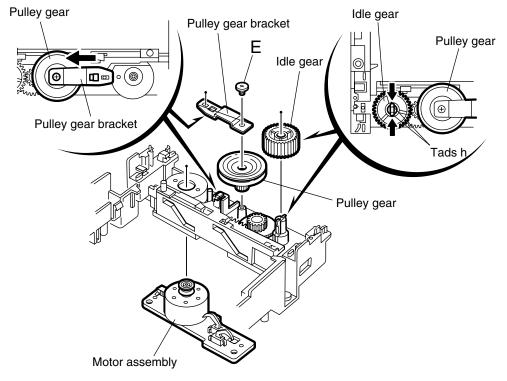


Fig.10

■ Removing the Idle gear / pulley gear / middle gear / slide cam (See Fig.10 to 12)

- Prior to performing the following procedure, remove the clamper assembly, the tray, the traverse mechanism assembly, the elevator and the motor assembly.
- 1. Press the two tabs **h** inward and pull out the idle gear.
- 2. Remove the screw **E** attaching the pulley gear bracket. Slide the pulley gear bracket in the direction of the arrow and pull out the pulley gear.
- 3. Slide the slide cam in the direction of the arrow to release the two joints **i** and remove upward.
- 4. Remove the middle gear.

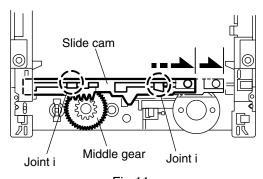
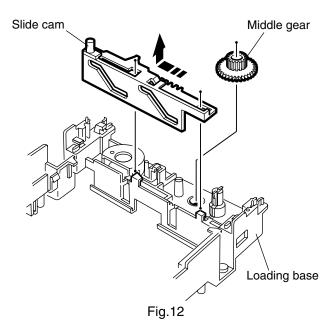



Fig.11

<Traverse mechanism assembly section> Feed motor assembly

■ Removing the feed motor assembly (See Fig.13)

- 1. Unsolder the two soldering ${\bf j}$ on the spindle motor board.
- 2. Remove the two screws **F** attaching the feed motor assembly.

Notch k Soldering j Spindle motor Spindle motor

Fig.13

■ Removing the feed motor

(See Fig.13 to 15)

- Prior to performing the following procedure, remove the feed motor assembly.
- 1. Remove the screw **G** attaching the thrust spring.

ATTENTION: When reattaching the thrust spring, make sure that the thrust spring presses the feed gear (M) and the feed gear (E) reasonably.

- 2. Remove the feed gear (M).
- 3. Pull out the feed gear (E) and the lead screw.
- 4. Remove the two screws **H** attaching the feed motor.

ATTENTION: When reattaching, pass the two cables extending from the feed motor through the notch **k** of the feed holder as shown in Fig.13.

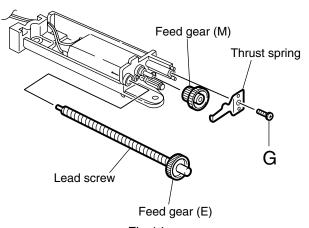
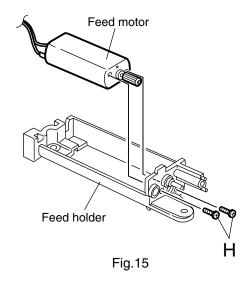
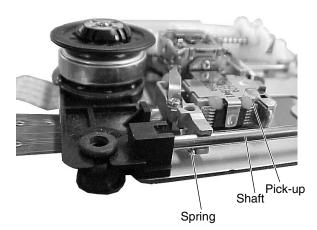



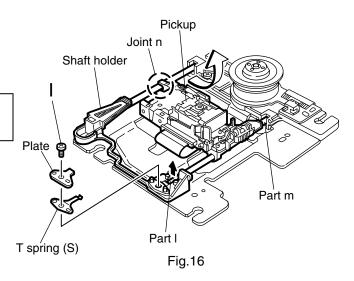
Fig.14

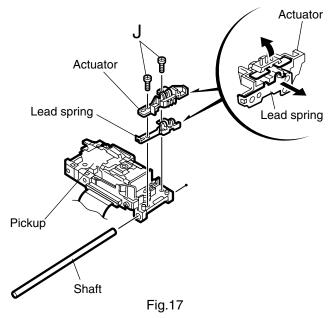


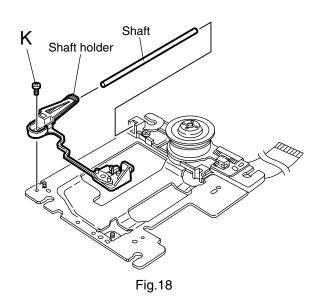
■ Removing the pickup (See Fig.16 and 17)

1. Remove the screw I attaching the T spring (S) and the shaft holder. Remove also the plate.

ATTENTION: When reattaching, make sure that the T spring (S) presses the shaft.


- 2. Pull out the part I of the shaft upward. Move the part m in the direction of the arrow and detach from the spindle base.
- 3. Disengage the joint **n** of the pickup and the shaft in the direction of the arrow.
- 4. Pull out the shaft from the pickup.
- 5. Remove the two screws **J** attaching the actuator.
- 6. Disengage the joint of the actuator and the lead spring. Pull out the lead spring.




The spring must be under the shaft when you install pick-up.

- 1. Remove the screw **K** attaching the shaft holder.
- 2. Remove the shaft.

■ Removing the spindle motor assembly (See Fig.19 to 21)

1. Remove the three screws **L** attaching the spindle motor on the bottom of the mechanism base.

ATTENTION: When reattaching, pass the card wire extending from the spindle motor board through the notch of the spindle base.

2. Remove the three screws **M** attaching the spindle base

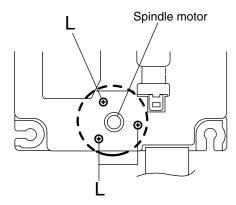


Fig.19

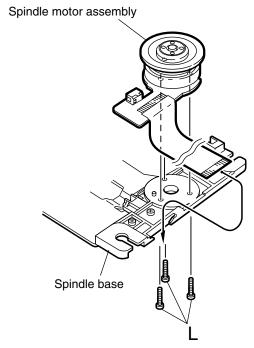


Fig.20

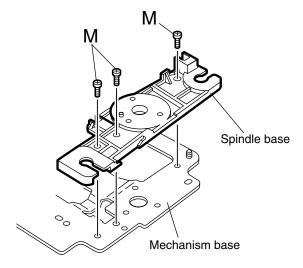


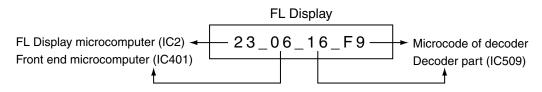

Fig.21

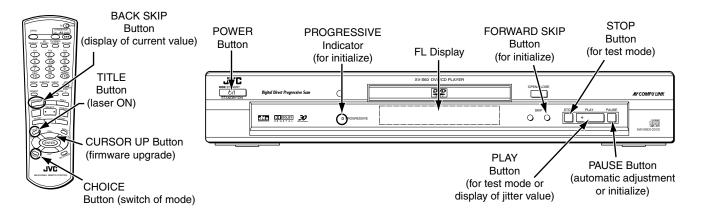
Adjustment method

(1) Test mode setting method

- 1) Take out the disc and close the tray.
- 2)Unplug the power plug.
- 3)Insert power plug into outlet while pressing both "PLAY" button and "STOP" button of the main body.
- 4) The player displays "TEST * * " on the FL display. " * * " means the player version.
- 5) When the power supply is turned off, test mode is released.

The mode changes as follows whenever the "CHOICE" button of remote control is pushed in test mode.


(2) Initialization method


Please initialize according to the following procedures when microprocessor or pick-up is exchanged and when the up-grade is done.

- 1)Makes to test mode.
- 2)After "FORWARD SKIP" button (▶▶) of the main body is pushed, "PAUSE" button is pushed.
- 3)A green progressive indicator lights when about ten seconds pass. Then, it is initialization completion. (When scan mode is set to the progressive scanning, the indicator is green from red.)

(3) Method of displaying version of microcomputer

- 1)Makes to test mode and initializes
- 2)When "CHOICE" button of remote control is pushed once, the figure is displayed on the FL display as follows.

(4) Display of current value of laser

- 1)Makes to test mode and initializes
- 2) When "CHOICE" button of remote controller is pushed twice, It is displayed on the FL display, "CHECK".
- 3)The display of FL display changes from "CHECK" into "LD_ON" if the "TITLE" button of remote controller is pushed.
- 4)The laser is turned on if the "BACK SKIP" button (►) of remote controller is pushed in the state, and the current value of the laser is displayed on the FL display.

FL Display
LD_0042

As for the current value of the laser, the figure displayed on the FL display becomes a current value as it is by "mA" unit. becomes 42mA if displayed as 42.

5)The laser changes from CD into DVD if 3) and 4) of the above-mentioned procedures are done after the tray is opened and closed pushing the "OPEN/CLOSE" button of the main body. (The laser changes whenever this is done.)

If the laser current value is 64mA or less, it is roughly good. There is a possibility to which pick-up is deteriorated, and exchange pick-up, please when there are 65mA or more laser current value.

(5) Display of jitter value

- 1)Makes to test mode and initializes
- 2)When "CHOICE" button of remote controller is pushed twice, It is displayed on the FL display, "CHECK".
- 3)The automatic adjustment starts when test disk (VT-501) is inserted, and "PAUSE" button of the main body is pushed.
- 4)When the display of the FL display changes into "CHECK OK", the "PLAY" button of the main body is pushed.
- 5)The jitter value is displayed on the FL display as follows.

FL Display

JIT_3978

The jitter value is displayed by the hexadecimal number and refer to the conversion table of following, please.

If the indication value is 11% or less, it can be judged by this simple checking method that the signal read precision of the set is satisfactory.

Please do "Flap adjustment of the pick-up guide shaft" when you replace the pick-up and the spindle motor when there are 11% or more jitter value.

■ Jitter value

Uittei	value						
FL display	Conversion value(%)						
3818	4.7	3998	7.6	3B18	10.5	3C98	13.3
3828	4.8	39A8	7.7	3B28	10.6	3CA8	13.5
3838	4.9	39B8	7.8	3B38	10.7	3CB8	13.6
3848	5.1	39C8	7.9	3B48	10.8	3CC8	13.7
3858	5.2	39D8	8.1	3B58	10.9	3CD8	13.8
3868	5.3	39E8	8.2	3B68	11.1	3CE8	13.9
3878	5.4	39F8	8.3	3B78	11.2	3CF8	14.1
3888	5.5	3A18	8.5	3B88	11.3	3D18	14.3
3898	5.7	3A28	8.7	3B98	11.4	3D28	14.4
38A8	5.8	3A38	8.8	3BA8	11.5	3D38	14.5
38b8	5.9	3A48	8.9	3BB8	11.7	3D48	14.7
38c8	6.0	3A58	9.0	3BC8	11.8	3D58	14.8
38d8	6.1	3A68	9.1	3BD8	11.9	3D68	14.9
38E8	6.3	3A78	9.3	3BE8	12.0	3D78	15.0
38F8	6.4	3A88	9.4	3BF8	12.1	3D88	15.1
3918	6.6	3A98	9.5	3C18	12.4	3D98	15.3
3928	6.7	3AA8	9.6	3C28	12.5	3DA8	15.4
3938	6.9	3AB8	9.7	3C38	12.7	3DB8	15.5
3948	7.0	3AC8	9.9	3C48	12.7	3DC8	15.6
3958	7.1	3AD8	10.0	3C58	12.9	3DD8	15.7
3968	7.2	3AE8	10.1	3C68	13.0	3DE8	15.9
3978	7.3	3AF8	10.2	3C78	13.1	3DF8	16.0
3988	7.5			3C88	13.2		

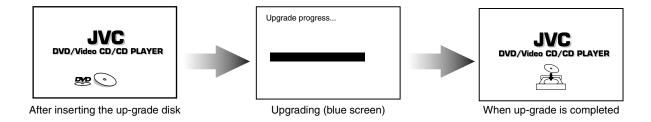
This jitter value is not correctly displayed according to the version of the microcomputer.

Please do the microcomputer in the up-grade when the jitter value

Front end microcomputer (IC401)

Version : 06

Decoder part (IC509) Version : 18


is not correctly displayed.

The jitter value is not correctly displayed when the version is below this figure.

(This version is contained.)

(6) Upgrading of firmware

- 1) The power supply is turned on pushing the "POWER" button.
- 2)The up-grade disk is inserted.
- 3)When FL display of the main body changes from "READING" into "UPGRADE", cursor UP button (🛕) of remote controller is pushed.
- 4) The up-grade starts if the entire screen becomes blue and it is displayed, "Upgrade progress".
- 5) The tray opens automatically, the up-grade disk is removed.
- 6)The up-grade ends if the tray closes automatically, and the screen returns to the normal screen.
- 7)Please confirm the version of the microcomputer after makes to test mode and initializes.

The disk for the up-grade is usually one piece. The disk becomes two pieces according to the version. In that case, please note the undermentioned content.

- * The up-grade is done by using the STEP1 disk according to "1)" and "4)" of the above-mentioned procedure.
- * The tray opens automatically after a few seconds and exchange for the disk of STEP2, please.
- * The tray closes automatically. There is only about five second time that the tray opens this time, and replace the disk quickly between those, please.

ATTENTION

- When the tray shuts with the STEP1 disk left for the tray
 - The up-grade starts again and exchange for the STEP2 disk, please when the tray opens automatically.
- When the tray closes with there no disk in the tray
 - The tray opens automatically and turn off the power supply once, please pushing the "POWER" button in the state. When the STANDBY indicator lights, the STEP2 disk is putting in the tray and "POWER" button is pushed.
- * After the up-grade ends, the STEP2 disk is removed because the tray opens automatically.
- * Afterwards, it is the same as 6),7) of the above-mentioned procedures.

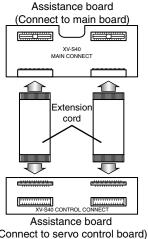
■ Flap adjustment of the pick-up guide shaft

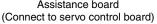
<Tool list for adjustment>

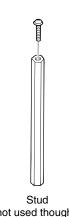
Stud (four pieces set)

Parts No.: JIGXVS40

Extension cord set (two cord and two board)

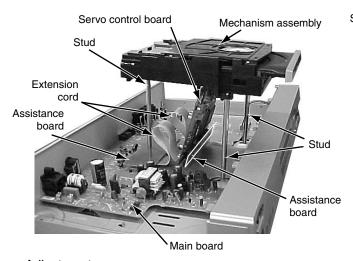

Parts No.: EXTXVS40CB

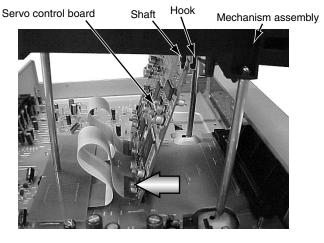

Hex wrench for adjustment


Off-the-shelf (1.3mm)

Test disc

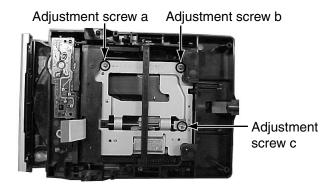
VT-501 or VT-502





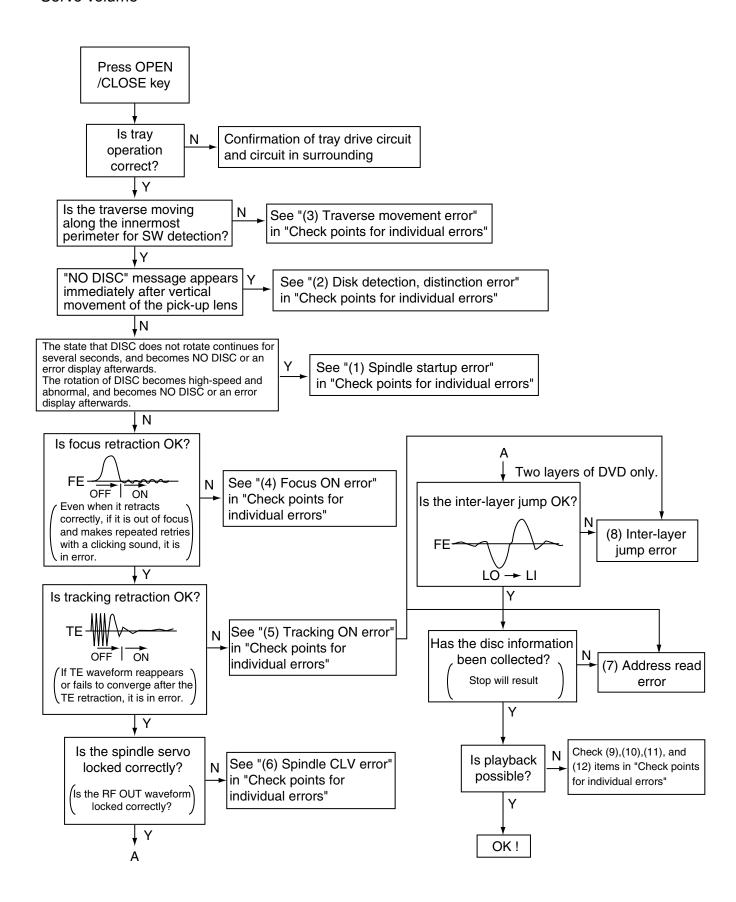
One is not used though it is one set which consists of four units.

<Adjustment preparation>


- 1. The mechanism assembly is made in the state from the main body from which is detached referring to the disassembly method.
- 2. Three studs are installed in the mechanism assembly respectively.
- 3. The servo control board is removed from the mechanism assembly, and puts into the state set up as shown in figure. (Each wire connected by the servo control board this time leaves the connection maintained.) Between shaft and hook of mechanism assembly of figure Board is put And, the board is inclined in the direction of the arrow on figure as much as possible.
- 4. The extension cord is inserted in the connector of the assistance board respectively. The main board is connected with the servo control board as shown in figure.

<Adjustment>

- 1. Puts into the state to display the jitter value on the FL display referring to "Display of the jitter value".
- 2. The adjustment screw under the traverse mechanism is turned with hex wrench, and matches so that the jitter value displayed on the FL display may become minimum value.



<POINT>

- 1.turns in the forward or the opposite direction, and makes to the position where the iitter value is good the half rotation of adjustment screw a and b(180 degrees) respectively.
- 2. Afterwards, adjustment screw b and c are turned in the same way, and makes to the best position.

Troubleshooting

Servo volume

Check points for each error

- (1) Spindle start error
 - 1.Defective spindle motor

*Are there several ohms resistance between each pin of CN201 "5-6", "6-7", "5-7"? (The power supply is turned off and measured.)

*Is the sign wave of about 100mVp-p in the voltage had from each terminal? [CN201"9"(H1-),"10"(H1+),"11"(H2-),"12"(H2+),"13"(H3-),"14"(H3+)]

2.Defective spindle motor driver (IC251)

*Has motor drive voltage of a sine wave or a rectangular wave gone out to each terminal(SM1~3) of CN201"5,6,7" and IC251"2,4,7"?

*Is FG pulse output from the terminal of IC251"24"(FG) according to the rotation of the motor?

*Is it "L(about 0.9V)" while terminal of IC251"15"(VH) is rotating the motor?

3. Has the control signal come from servo IC or the microcomputer?

*Is it "L" while the terminal of IC251"18"(SBRK) is operating? Is it "H" while the terminal of IC251"23"(/SPMUTE) is operating?

*Is the control signal input to the terminal of IC251"22"(EC)? (changes from VHALF voltage while the motor is working.)

*Is the VHALF voltage input to the terminal of IC251"21"(ECR)?

4.Is the FG signal input to the servo IC?

*Is FG pulse input to the terminal of IC201"53"(FG) according to the rotation of the motor?

- (2) Disc Detection, Distinction error (no disc, no RFENV)
 - * Laser is defective.
 - * Front End Processor is defective (IC101).
 - * APC circuit is defective. --- Q101,Q102.
 - * Pattern is defective. --- Lines for CN101 All patterns which relate to pick-up and patterns between IC101
 - * Servo IC is defective (IC201).
 - * IC101 --- For signal from IC101 to IC201, is signal output from IC101 "20" (ASOUT) and IC101 "41"(RFENV) and IC101 "22" (FEOUT)?

(3) Traverse movement NG

1.Defective traverse driver

*Has the voltage come between terminal of CN101 "1" and "2"?

2.Defective BTL driver (IC271)

*Has the motor drive voltage gone out to IC271"17" or "18"?

3. Has the control signal come from servo IC or the microcomputer?

*Is it "H" while the terminal of IC271"9"(STBY1)?

*TRSDRV Is the signal input? (IC201 "51")

4.TRVSW is the signal input from microcomputer? (IC401 "50")

(4) Focus ON NG

- * Is FE output ? --- Pattern, IC101
- * Is FODRV signal sent ? (R279) --- Pattern, IC201
- * Is driving voltage sent?

IC271 "13", "14" --- If NG, pattern, driver, mechanical unit.

* Mechanical unit is defective.

(5) Tracking ON NG

- * When the tracking loop cannot be drawn in, TE shape of waves does not settle.
- * Mechanical unit is defective.

Because the self adjustment cannot be normally adjusted, the thing which cannot be normally drawn in is thought.

* Periphery of driver (IC271)

Constant or IC it self is defective.

* Servo IC (IC201)

When improperly adjusted due to defective IC.

(6) Spindle CLV NG

- * IC101 -- "35"(RF OUT), "30"(RF-), "31(RF+).
- * Does not the input or the output of driver's spindle signal do the grip?
- * Has the tracking been turned on?
- * Spindle motor and driver is defective.
- * Additionally, "IC101 and IC201" and "Mechanism is defective(jitter)", etc. are thought.

(7) Address read NG

* Besides, the undermentioned cause is thought though specific of the cause is difficult because various factors are thought.

Mechanism is defective. (jitter)

IC201, IC301, IC401.

The disc is dirty or the wound has adhered.

(8) Between layers jump NG (double-layer disc only)

Mechanism defective

Defect of driver's IC(IC271)

Defect of servo control IC(IC201)

XV-S60BK/XV-S62SL/XV-S65GD

(9) Neither picture nor sound is output

1.It is not possible to search

*Has the tracking been turned on?

*To "(5) Tracking ON NG" in "Check points for each error" when the tracking is not normal.

*Is the feed operation normal?

To "(3) traverse movement NG" in "Check points for each error" when it is not normal.

Are not there caught of the feeding mechanism etc?

(10) Picture is distorted or abnormal sound occurs at intervals of several seconds.

Is the feed operation normal?

Are not there caught of the feeding mechanism etc?

(11) Others

The image is sometimes blocked, and the image stops. The image is blocked when going to outer though it is normal in surroundings in the disk and the stopping symptom increases.

There is a possibility with bad jitter value for such a symptom.

(12) CD During normal playback operation

a) Is TOC reading normal?
 Displays total time for CD-DA.
 Shifts to double-speed mode for V-CD.

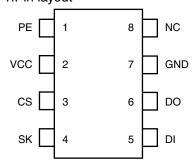
b)Playback possible?

NO

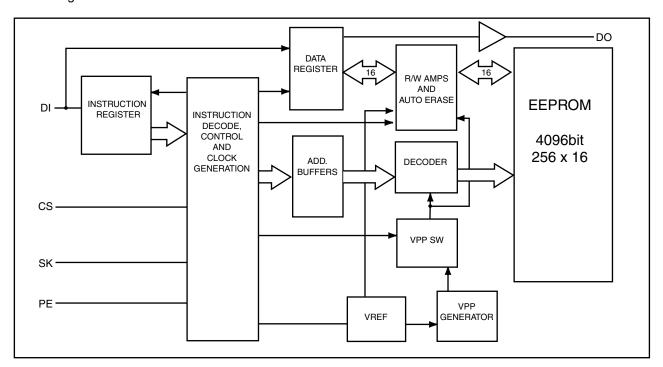
*--:-- is displayed during FL search.

According to [It is not possible to search] for DVD(9), check the feed and tracking systems.

*No sound is output although the time is displayed.(CA-DA) DAC, etc, other than servo.


*The passage of time is not stable, or picture is abnormal.(V-CD)

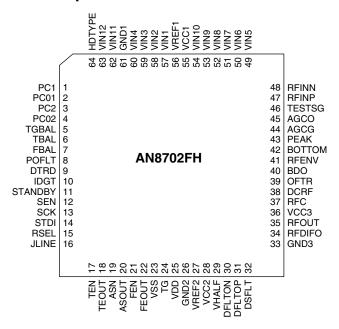
*The wound of the disc and dirt are confirmed.


Description of major ICs

■ AK93C65AF-X(IC403):EEPROM

1.Pin layout

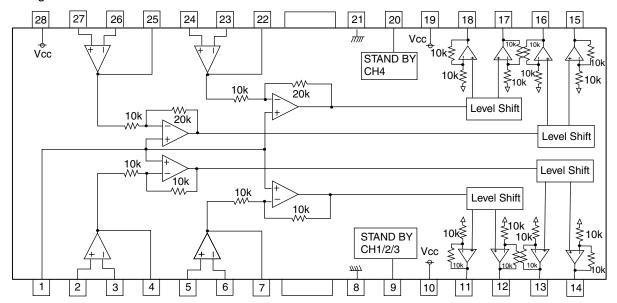
2.Block diagram


3.Pin function

Pin No.	Symbol	Description
1	PE	Program enable (Resistance with built-in pull-up)
2	VCC	Power supply terminal
3	CS	Chip select
4	SK	Serial clock input
5	DI	Serial data input
6	DO	Serial data output
7	GND	Connect to ground
8	NC	Non connect

Attention: Resistors of pin No.1(PE) are 2.5M ohm.

■ AN8702FH(IC101):Frontend processor



2.Pin function

Pin No.	Symbol	I/O	Description	Pin No.	Symbol	I/O	Description
1	PC1	Τ	Disc detection signal input (DVD)	34	RFDIFO		
2	PC01	I/O	Laser current control terminal	35	RFOUT	-	To TP101
3	PC2	ı	Disc detection signal input (CD)	36	VCC3	-	Power supply terminal 5V
4	PC02	I/O	Laser current control terminal	37	RFC		
5	TGBAL	ı	Tangential phase balance control terminal	38	DCRF	0	All addition amplifier capacitor terminal
6	TBAL	I	Tracking balance control terminal	39	OFTR	0	OFTR output terminal
7	FBAL	ı	Focus balance control terminal	40	BDO	0	Drop out
8	POFLT	0	Track detection threshold level terminal	41	RFENV	0	RF envelope output terminal
9	DTRD	ı	Data slice part data read signal input terminal	42	воттом	0	Bottom envelope detection filter terminal
			(For RAM)	43	PEAK	0	Peak envelope detection filter terminal
10	IDGT	ı	Data slice part address part gate signal input	44	AGCG	0	AGC amplifier gain control terminal
			terminal(For RAM)	45	AGCO		
11	STANDBY	ı	Standby mode control terminal	46	TESTSG	ı	TEST signal input terminal
12	SEN	ı	SEN(Serial data input terminal)	47	RFINP	ı	RF signal positive input terminal
13	SCK	ı	SCK(Serial data input terminal)	48	RFINN	ı	RF signal negative input terminal
14	STDI	ı	STDI(Serial data input terminal)	49	VIN5	ı	Focus input of external division into two terminal
15	RSEL			50	VIN6	ı	Focus input of external division into two terminal
16	JLINE	ı	J-line setting input(FEP)	51	VIN7	ı	
17	TEN			52	VIN8	ı	
18	TEOUT	0	Tracking error signal output terminal	53	VIN9	I	Focus input of external division into two terminal
19	ASN			54	VIN10	ı	Focus input of external division into two terminal
20	ASOUT	0	Full adder signal output	55	VCC1	-	Power supply terminal 5V
21	FEN	I	Focus error output amplifier reversing input terminal	56	VREF1	0	VREF1 voltage output terminal
22	FEOUT	0	Focus error signal output terminal	57	VIN1	Ι	External division into four (DVD/CD) RF input
23	VSS	-	Connect to GND				terminal1
24	TG	0	Tangential phase error signal output terminal	58	VIN2	ı	External division into four (DVD/CD) RF input
25	VDD	-	Power supply terminal 3V				terminal2
26	GND2	-	Connect to GND	59	VIN3	Ι	External division into four (DVD/CD) RF input
27	VREF2	0	VREF2 voltage output terminal				terminal3
28	VCC2	-	Power supply terminal 5V	60	VIN4	ı	External division into four (DVD/CD) RF input
29	VHALF	0	VHALF voltage output terminal				terminal4
30	DFLTON	0	Equivalence RF-	61	GND1	-	Connect to GND
31	DFLTOP	0	Equivalence RF+	62	VIN11	ı	Tracking input
32	DSFLT			63	VIN12	Ī	Tracking input
33	GND3	-	Connect to GND	64	HDTYPE	-	Connect to ground

■ BA5983FM-X (IC271): 4CH DRIVER

1.Block diagram

2.Pin function

Pin No.	Symbol	I/O	Function	Pin No.	Symbol	I/O	Function
1	BIAS IN	I	Input for Bias-amplifier	15	VO4(+)	0	Non inverted output of CH4
2	OPIN1(+)	I	Non inverting input for CH1 OP-AMP	16	VO4(-)	0	Inverted output of CH4
3	OPIN1(-)	Ι	Inverting input for CH1 OP-AMP	17	VO3(+)	0	Non inverted output of CH3
4	OPOUT1	0	Output for CH1 OP-AMP	18	VO3(-)	0	Inverted output of CH3
5	OPIN2(+)	I	Non inverting input for CH2 OP-AMP	19	PowVcc2	-	Vcc for CH3/4 power block
6	OPIN2(-)	Ι	Inverting input for CH2 OP-AMP	20	STBY2	_	Input for Ch4 stand by control
7	OPOUT2	0	Output for CH2 OP-AMP	21	GND	-	Substrate ground
8	GND	-	Substrate ground	22	OPOUT3	0	Output for CH3 OP-AMP
9	STBY1	1	Input for CH1/2/3 stand by control	23	OPIN3(-)	_	Inverting input for CH3 OP-AMP
10	PowVcc1	-	Vcc for CH1/2 power block	24	OPIN3(+)	-	Non inverting input for CH3 OP-AMP
11	VO2(-)	0	Inverted output of CH2	25	OPOUT4	0	Output for CH4 OP-AMP
12	VO2(+)	0	Non inverted output of CH2	26	OPIN4(-)	Ι	Inverting input for CH4 OP-AMP
13	VO1(-)	0	Inverted output of CH1	27	OPIN4(+)	I	Non inverting input for CH4 OP-AMP
14	VO1(+)	0	Non inverted output of CH1	28	PreVcc	ı	Vcc for pre block

■ 74LCX373MTC-X(IC512,IC513)

1.Pin layout

OE	1	20	VCC
Q0	2	19	Q7
D0	3	18	D7
D1	4	17	D6
Q1	5	16	Q6
Q2	6	15	Q5
D2	7	14	D5
D3	8	13	D4
Q3	9	12	Q4
GND	10	11	LE
			ı

2.Pin function

Symbol	Description	
D0~D7	Data inputs	
LE	Latch enable input	
ŌĒ	Output enable input	
Q0~Q7	3-State latch outputs	

3.Truth table

	OUTPUTS		
LE	le O	Dn	Qn
Х	Н	Х	Z
н	L	L	L
н	L	Н	Н
L	L	Х	Q0

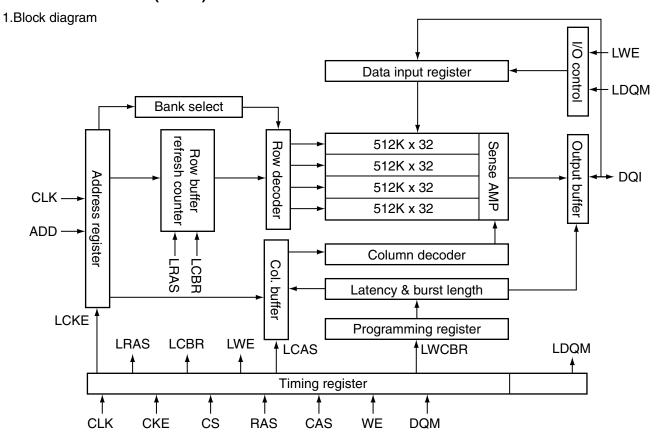
H = HIGH Voltage level
L = LOW Voltage level

Z = High impedance

X = Immaterial

Q0 = Previous Q0 before HIGH to LOW transition of latch enable

■ BA6664FM-X(IC251):Spindle motor driver


1.Pin layout

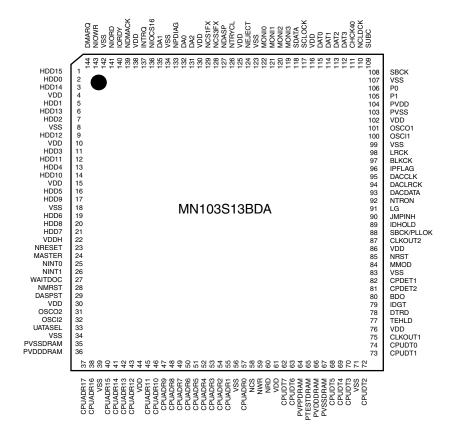
		ι,		
NC	1	$\overline{}$	28	RNF
АЗ	2		27	VM
NC	3		26	GSW
A2	4		25	VCC
NC	5		24	FG
NC	6		23	PS
A1	7		22	EC
	29		30	
GND	8		21	ECR
H1+	9		20	FR
H1-	10		19	FG2
H2+	11		18	SB
H2-	12		17	CNF
H3+	13		16	BR
H3-	14		15	VH

2.Pin function

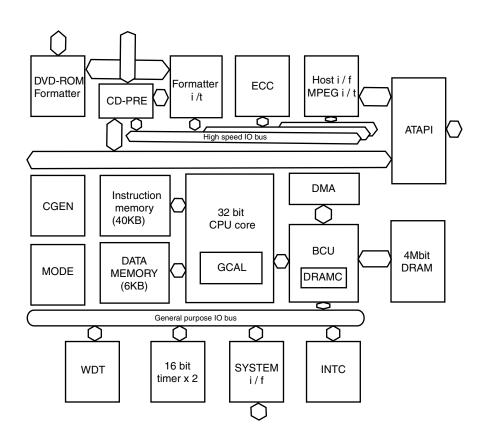
Pin No.	Symbol	I/O	Description
1	NC	-	Non connect
2	A3	0	Output 3 for spindle motor
3	NC	-	Non connect
4	A2	0	Output 2 for spindle motor
5	NC	-	Non connect
6	NC	-	Non connect
7	A1	0	Output 1 for spindle motor
8	GND	-	Connect to ground
9	H1+	I	Positive input for hall input AMP 1
10	H1-	I	Negative input for hall input AMP 2
11	H2+	I	Positive input for hall input AMP 2
12	H2-	I	Negative input for hall input AMP 2
13	H3+	I	Positive input for hall input AMP 3
14	H3-	ı	Negative input for hall input AMP 3
15	VH	I	Hall bias terminal
16	BR	-	Non connect
17	CNF	-	Capacitor connection pin for phase compensation
18	SB	0	Short brake terminal
19	FG2	-	Non connect
20	FR	-	Non connect
21	ECR	I	Torque control standard voltage input terminal
22	EC	ı	Torque control voltage input terminal
23	PS	0	Start/stop switch (power save terminal)
24	FG	0	FG signal output terminal
25	VCC	-	Power supply for signal division
26	GSW	0	Gain switch
27	VM	-	Power supply for driver division
28	RNF	0	Resistance connection pin for output current sense
29		-	Connect to ground
30		-	Connect to ground

■ K4S643232E-TC70(IC505):DRAM

2.Pin function


Symbol	Description	Symbol	Description
CLK	System clock signal input	DQM0~3	Data input/output mask
CS	Chip select input	DQ0~31	Data input/output
CKE	Clock enable	VDD	Power supply terminal
A0~A10	Address	VSS	Connect to ground
BA0,1	Bank select address	VDDQ	Power supply terminal
RAS	Row address strobe	VSSQ	Connect to ground
CAS	Column address strobe	NC	Non connect
WE	Write enable		

■ MN102L25GGM1(IC401):Unit CPU Pin function


Dia Na	Symbol	I/O	Function	Dia Na	Symbol	I/O	Function
Pin No.		-		Pin No.		1/0	
2	WAIT		Micon wait signal input Read enable	51	SWUPDN		Elevator UP/DOWN switch detect
3	RE	0		52	SWOPEN		Tray OPEN/CLOSE switch detect
4	SPMUTE	0	Spindle muting output to IC251 Write enable	53	ADSCEN	0	Serial enable signal for ADSC
5	WEN	0		54	VDD	-	Power supply Serial enable signal for FEP
6	LMMUTE	0	Loading motor standby control Chip select for ODC	55	FEPEN	0	
7	CS1	0	Connect to TP166	56	SLEEP	0	Standby signal for FEP Non connect
8	CS2	-	Non connect	57	BUSY	-	
9	CS3	-	Driver mute	58	REQ	0	Communication Request CIRC command select
10	DRVMUTE		Spin kick (Non connect)	59	CIRCEN	-	Non connect
11	SPKICK	00	LSI reset	60 61	VSS	-	Ground
12	LSIRST WORD		Bus selection input	62	EPCS	0	EEPROM chip select
13		0	Address bus 0 for CPU	63		0	EEPROM clock
14	A0	0	Address bus 1 for CPU	64	EPSK	<u> </u>	EEPROM data input
15	A1		Address bus 2 for CPU		DPDI	-	EEPROM data output
16	A2	0	Address bus 3 for CPU	65	EPDO	0	Power supply
17	A3	0		66	VDD	-	Communication clock
18	VDD	-	Power supply Connect to TP169	67	SCLKO		Communication clock Communication input data
19	SYSCLK	-	Ground	68	S2UDT	_	
20	VSS	-		69	U2SDT	0	Communication output data Clock for ADSC serial
21	XI	-	Not use (Connect to vss) Connect to TP170	70	CPSCK	0	ADSC serial data input
22	XO	-		71	SDIN		•
	VDD	-	Power supply	72	SDOUT	0	ADSC serial data output
23	OSCI		Clock signal input	73	-	-	Not use
24	OSCO	0	Clock signal output	74	- N IN 41	-	Not use
25	MODE	<u> </u>	CPU Mode selection input	75	NMI	-	Not use
26	A4	0	Address bus 4 for CPU	76	ADSCIRQ	<u> </u>	Interrupt input of ADSC
27	A5	0	Address bus 5 for CPU	77	ODCIRQ	<u> </u>	Interrupt input of ODC
28	A6	0	Address bus 6 for CPU	78	DECIRQ		Interrupt input of ZIVA
29	A7	0	Address bus 7 for CPU	79	CSSIRQ	-	Not use
30	A8	0	Address bus 8 for CPU	80	ODCIRQ2	<u> </u>	Interruption of system control
31	A9	0	Address bus 9 for CPU	81	ADSEP	<u> </u>	Address data selection input
32	A10	0	Address bus 10 for CPU	82	RST	ı	Reset input
33	A11	0	Address bus 11 for CPU	83	VDD	-	Power supply
34	VDD	-	Power supply	84	TEST1	<u> </u>	Test signal 1 input
35	A12	0	Address bus 12 for CPU	85	TEST2	<u> </u>	Test signal 2 input
36	A13	0	Address bus 13 for CPU	86	TEST3		Test signal 3 input
37	A14		Address bus 14 for CPU	87	TEST4	<u> </u>	Test signal 4 input
38	A15		Address bus 15 for CPU	88	TEST5		Test signal 5 input
39	A16		Address bus 16 for CPU	89	TEST6		Test signal 6 input
40	A17		Address bus 17 for CPU	90	TEST7		Test signal 7 input
41	A18	-	Non connect	91	TEST8		Test signal 8 input
42	A19	-	Non connect	92	VSS	-	Ground
43	VSS	-	Ground	93	D0		Data bus 0 of CPU
44	A20	-	Non connect	94	D1		Data bus 1 of CPU
45	TXSEL	-	Connect to TP910	95	D2		Data bus 2 of CPU
46	HAGUP	0	<u> </u>	96	D3		Data bus 3 of CPU
47	TCLOSE		Tray close signal	97	D4		Data bus 4 of CPU
48	TOPEN	I/O	Tray open signal	98	D5		Data bus 5 of CPU
49	HMFON			99	D6		Data bus 6 of CPU
50	TRVSW	I	Detection switch of traverse	100	D7	1/0	Data bus 7 of CPU
			inside				

■ MN103S13BDA(IC301):Optical disc controller

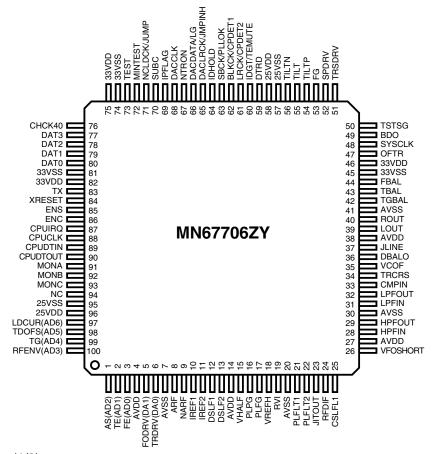
1.Pin layout

2.Block diagram

3.Pin function (1/3)

Pin No.	Symbol	I/O	Description
1	HDD15	I/O	ATAPI Data
2	HDD0	I/O	ATAPI Data
3	HDD14	I/O	ATAPI Data
4	VDD	-	Power supply 3V
5	HDD1	I/O	ATAPI Data
6	HDD13	I/O	ATAPI Data
7	HDD2	I/O	ATAPI Data
8	VSS	-	Connect to GND
9	HDD12	I/O	ATAPI Data
10	VDD	-	Power supply 2.7V
11	HDD3	I/O	ATAPI Data
12	HDD11	I/O	ATAPI Data
13	HDD4	I/O	ATAPI Data
14	HDD10	I/O	ATAPI Data
15	VDD	-	Power supply 3V
16	HDD5	I/O	ATAPI Data
17	HDD9	I/O	ATAPI Data
18	VSS	-	Connect to GND
19	HDD6	I/O	ATAPI Data
20	HDD8	I/O	ATAPI Data
21	HDD7	I/O	ATAPI Data
22	VDDH	1,0	71711 7 2414
23	NRESET	ı	ATAPI Reset input
24	MASTER	I/O	ATAPI Master/slave select
25	NINT0	0	Interruption of system control 0
26	NINT1	0	Interruption of system control 1
27	WAITDOC	0	Wait control of system control
28	NMRST	0	Reset of system control (Connect to TP302)
29	DASPST	Ĭ	Setting of initial value of DASP signal
30	VDD	-	Power supply 3V
31	OSCO2	0	Non connect
32	OSCI2	Ī	Non connect
33	UATASEL	i	Connect to VSS
34	VSS	-	Connect to GND
35	PVSSDRAM		Connect to VSS
36	PVDDDRAM		Connect to VDD(2.7V)
37	CPUADR17	I	System control address
38	CPUADR16	I	System control address
39	VSS	-	Connect to GND
40	CPUADR15	I	System control address
41	CPUADR14	I	System control address
42	CPUADR13	I	System control address
43	CPUADR12	I	System control address
44	VDD	-	Power supply 2.7V
45	CPUADR11	I	System control address
46	CPUADR10	I	System control address
47	CPUADR9	I	System control address
48	CPUADR8	I	System control address
49	CPUADR7	I	System control address
50	CPUADR6	I	System control address
	<u> </u>	1	

3.Pin function (2/3)


Pin No.	Symbol	I/O	Description
51	CPUADR5	I	System control address
52	CPUADR4	I	System control address
53	CPUADR3	I	System control address
54	CPUADR2	I	System control address
55	CPUADR1	I	System control address
56	VSS	-	Connect to GND
57	CPUADR0	ı	System control address
58	NCS	I	System control chip select
59	NWR	I	Writing system control
60	NRD	I	Reading system control
61	VDD	-	Power supply 3V
62	CPUDT7	I/O	System control data
63	CPUDT6	I/O	System control data
64	PVPPDRAM	0	Connect to VSS
65	PTESTDRAM	Ī	Connect to VSS
66	PVDDDRAM		Connect to VDD(2.7V)
67	PVSSDRAM		Connect to VSS
68	CPUDT5	I/O	System control data
69	CPUDT4	I/O	System control data
70	CPUDT3	I/O	System control data
71	VSS	-	Connect to GND
72	CPUDT2	I/O	System control data
73	CPUDT1	1/0	System control data
74	CPUDT0	1/0	System control data System control data
75	CLKOUT1	0	Clock signal output (16.9/11.2/8.45MHz)
76	VDD		Power supply 3V
77	TEHLD	0	Mirror gate (Connect to TP141)
78	DTRD	0	Data frequency control switch (Connect to TP304)
79	IDGT	0	CAPA switch
80	BDO	-	RF Dropout/BCA data
		<u> </u>	
81	CPDET2	l	Outer capacity detection
82	CPDET1		Inner capacity detection
83	VSS	-	Connect to GND
84	MMOD	<u> </u>	Connect to VSS
85	NRST	ı	System reset
86	VDD	-	Power supply 3V
87	CLKOUT2	0	Clock 16.9MHz
88	SBCK/PLLOK	0	Flame mark detection
89	IDOHOLD	0	ID gate for tracking holding
90	JMPINH	0	Jump prohibition
91	LG	0	Land/group switch
92	NTRON		Tracking ON
93	DACDATA	0	Serial data output (Connect to TP148)
94	DACLRCK	0	Identification signal of L and R (Connect to TP149)
95	DACCLK		Clock for serial data output
96	IPFLAG	I	Input of IP flag
97	BLKCK	l	Sub code/block/input clock
98	LRCK		Identification signal of L and R (Connect to VSS)
99	VSS	-	Connect to GND
100	OSCI1		Oscillation input terminal 16.9MHz

3.Pin function (3/3)

		T	
Pin No.	Symbol	I/O	Description
101	OSCO1	0	Oscillation output terminal 16.9MHz
102	VDD	-	Power supply 3V
103	PVSS	-	Connect to GND
104	PVDD	-	Power supply 3V
105	P1	I/O	Terminal master polarity switch input
106	P0	I/O	CIRC-RAM,OVER/UNDER Interruption
107	VSS	-	Connect to GND
108	SBCK	0	Clock output for sub code,serial input
109	SUBC	I	Sub code,serial input
110	NCLDCK	I	Sub code,flame clock input
111	CHCK40	I	Clock is read to DAT3~0 (Output of division frequency from ADSC)
112	DAT3	I	Data is read from disc (Going side by side output from ADSC)
113	DAT2	I	Data is read from disc (Going side by side output from ADSC)
114	DAT1	I	Data is read from disc (Going side by side output from ADSC)
115	DAT0	I	Data is read from disc (Going side by side output from ADSC)
116	VDD	-	Power supply 3V
117	SCLOCK	I/O	Debug serial clock (270 ohm pull up)
118	SDATA	I/O	Debug serial data (270 ohm pull up)
119	MONI3	0	Internal good title monitor (Connect to TP150)
120	MONI2	0	Internal good title monitor (Connect to TP151)
121	MONI1	0	Internal good title monitor (Connect to TP152)
122	MONI0	0	Internal good title monitor (Connect to TP153)
123	VSS	-	Connect to GND
124	NEJECT	ı	Eject detection
125	VDD	-	Power supply 2.7V
126	NTRYCL	ı	Non connect (Tray close detection)
127	NDASP	I/O	ATAPI drive active / slave connect I/O
128	NCS3FX	I	Non connect (ATAPI host chip select)
129	NCS1FX	ı	Non connect (ATAPI host chip select)
130	VDD	-	Power supply 3V
131	DA2	I/O	ATAPI host address
132	DA0	I/O	Non connect (ATAPI host address)
133	NPDIAG	I/O	ATAPI Slave master diagnosis input
134	VSS	-	Connect to GND
135	DA1	I/O	Non connect (ATAPI host address)
136	NIOCS16	0	Output of selection of width of ATAPI host data bus
137	INTRQ	0	ATAPI Host interruption output
138	VDD	-	Power supply 3V
139	NDMACK	I	Non connect (ATAPI Host DMA characteristic)
140	IORDY	0	ATAPI Host ready output (Connect to TP157)
141	NIORD	I	Non connect (ATAPI host read)
142	VSS	-	Connect to GND
143	NIOWR	I/O	ATAPI Host write
144	DMARQ	0	ATAPI Host DMA request (Connect to TP159)
		1	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

■ MN67706ZY (IC201) : Auto digital servo controller

1.Pin layout

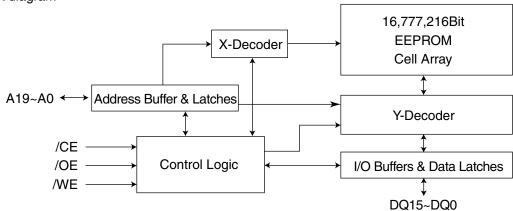
2.Pin functions (1/3)

Pin No.	Symbol	I/O	Description
1	AS(AD2)	1	AS : Full adder signal(FEP)
2	TE(AD1)	i	Phase difference/3 beam tracking error(FEP)
3	FE(AD0)	Ī	Focus error(FEP)
4	AVDD	-	Apply 3.3V(For analog circuit)
5	FODRV(DA1)	0	Focus drive(DRVIC)
6	TRDRV(DA0)	0	Tracking drive(DRVIC)
7	AVSS	-	Ground(For analog circuit)
8	ARF	I	Equivalence RF+(FEP)
9	NARF	I	Equivalence RF-(FEP)
10	IREF1	I	Reference current1(For DBAL)
11	IREF2	I	Reference current2(For DBAL)
12	DSLF1	I/O	Connect to capacitor1 for DSL
13	DSLF2	I/O	Connect to capacitor2 for DSL
14	AVDD	-	Apply 3.3V(For analog circuit)
15	VHALF	_	Reference voltage 1.65+-0.1V(FEP)
16	PLPG	1	Not use(PLL phase gain setting resistor terminal)
17	PLFG	1	Not use(PLL frequency gain setting resistor terminal)
18	VREFH	-	Reference voltage 2.2V+-0.1V(FEP)
19	RVI	I/O	Connect to resistor for VREFH reference current source
20	AVSS	-	Ground(For analog circuit)
21	PLFLT1	0	Connect to capacitor1 for PLL
22	PLFLT2	0	Connect to capacitor2 for PLL
23	JITOUT	I/O	Output for jitter signal monitor
24	RFDIF	ı	Not use
25	CSLFL1	I/O	Pull-up to VHALF

2.Pin function (2/3)

Pin No.	Symbol	I/O	Description
26	VFOSHORT	0	VFO short output
27	AVDD	-	Apply 3.3V(For analog circuit)
28	HPFIN	I	Pull-up to VHALF
29	HPFOUT	0	Connect to TP208
30	AVSS	-	Ground(For analog circuit)
31	LPFIN	ı	Pull-up to VHALF
32	LPFOUT	0	Not use
33	CMPIN	ı	Connect to TP210
34	TRCRS	ı	Input signal for track cross formation
35	VCOF	I/O	JFVCO control voltage
36	DBALO	0	DSL balance adjust output
37	JLINE	0	J-line setting output(FEP)
38	AVDD	-	Apply 3.3V(For analog circuit)
39	LOUT	0	Connect to TP203 (Analog audio left output)
40	ROUT	0	Connect to TP204 (Analog audio right output)
41	AVSS	-	Ground(For analog circuit)
42	TGBAL	0	Tangential balance adjust(FEP)
43	TBAL	0	Tracking balance adjust(FEP)
44	FBAL	0	Focus balance adjust(FEP)
45	33VSS	-	Ground(For I/O)
46	33VDD	-	Apply 3.3V(For I/O)
47	OFTR	ı	Off track signal
48	SYSCLK	ı	16.9344MHz system clock input(ODC)
49	BDO	ı	Drop out(FEP)
50	TSTSG	0	Calibration signal(FEP)
51	TRSDRV	0	Traverse drive(DRVIC)
52	SPDRV	0	Spindle drive output(DRVIC)
53	FG	ı	FG signal input (Spindle motor driver)
54	TILTP	0	Connect to TP205
55	TILT	0	Connect to TP206
56	TILTN	0	Connect to TP207
57	25VSS	-	Ground(For internal core)
58	25VDD	-	Apply 2.5V(For internal core)
59	DTRD	ı	Data read control signal(ODC)
60	IDGT/TEMUTE	ı	Pull-down to Ground
61	LRCK/CPDET2	0	LR channel data strobe(ODC)/
62	BLKCK/CPDET1	0	CD sub code synchronous signal(ODC)/
63	SBCK/PLLOK	ı	CD sub code data shift clock(ODC)/PLL pull-in OK signal input
64	IDHOLD	I	Pull-down to Ground
65	DACLRCK/JMPINH	I	1bit DAC-LR channel data strobe(ODC)/
66	DACDATA/LG	I	CD 1bit DAC channel data(ODC)
67	NTRON	0	L : Tracking ON(ODC)
68	DACCLK	0	1bit DAC channel data shift clock(ODC)
69	IPFLAG	0	CIRC error flag(ODC)
70	SUBC	0	CD sub code(ODC)
71	NCLDCK/JUMP	0	CD sub code data frame clock(ODC)/DVD JUMP signal(ODC)
72	MINTEST	I	Pull-down to Ground(For MINTEST)
73	TEST	I	Pull-down to Ground(For TEST)
74	33VSS	-	Ground(For I/O)
75	33VDD	-	Apply 3.3V(For I/O)
76	CHCK40	0	Clock for SRDATA(ODC)
77	DAT3	0	SRDATA3(ODC)
78	DAT2	0	SRDATA2(ODC)
79	DAT1	0	SRDATA1(ODC)
80	DAT0	0	SRDATA0(ODC)

2.Pin function (3/3)

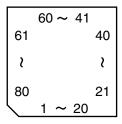

Pin No.	Symbol	I/O	Description
81	33VSS	-	Ground(For I/O)
82	33VDD	-	Apply 3.3V(For I/O)
83	TX	0	Digital audio interface
84	XRESET	I	Reset input (System control)
85	ENS	ı	Servo DSC serial I/F chip select (System control)
86	ENC	ı	CIRC serial I/F chip select (System control)
87	CPUIRQ	0	Interrupt request (System control)
88	CPUCLK	I	Syscon serial I/F clock (System control)
89	CPUDTIN	I	Syscon serial I/F data input (System control)
90	CPUDTOUT	0	Syscon serial I/F data output (System control)
91	MONA	0	Connect to TP226 (Monitor terminal A)
92	MONB	0	Connect to TP225 (Monitor terminal A)
93	MONC	0	Connect to TP224 (Monitor terminal A)
94	NC	0	Connect to TP211
95	25VSS	-	Ground(For internal core)
96	25VDD	-	Apply 2.5V(For internal core)
97	LDCUR(AD6)		
98	TDOFS(AD5)		
99	TG(AD4)		Tangential phase difference(FEP)
100	RFENV(AD3)	ı	RF envelope input(FEP)

■ SST39VF160-7CEK (IC509) : 16M EEPROM

1. Pin layout

A15	0	48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 32 29 28 27 26 25		A16 /BYTE Vss D15 D7 D14 D6 D13 D5 D12 D4 VDD D11 D3 D10 D2 D9 D1 D8 D0 /OE Vss /CE A0
-----	---	--	--	---

2. Block diagram

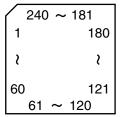


3. Pin function

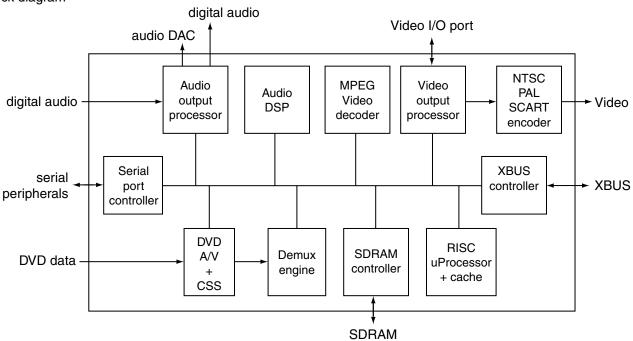
Symbol	Pin name	Function
A19~A0	Address Inputs	To provide memory addresses. During sector erase A19~A11 address
		lines will select the sector. During block erase A19~A15 address lines
		will select the block.
DQ15~DQ0	Data Input/Output	To output data during read cycles and receive input data during write
		cycles. Data is internally latched during a write cycle. The outputs are
		in tri-state when /OE or /CE is high.
/CE	Chip Enable	To activate the device when /CE is low.
/OE	Output Enable	To gate the data output buffers.
/WE	Write Enable	To control the write operations.
VDD	Power Supply	To provide 3-volt supply (2.7V-3.6V).
Vss	Ground	
NC	No Connection	

■ UPD780232GC-039(IC2):System controller

1.Pin layout



2.Pin function


Pin No.	Symbol	I/O	Description
1	VDD1	-	Power supply terminal (+)
2	VSS1	-	Connect to ground
3	X1	I	Main system clock oscillation terminal
4	X2	0	Main system clock oscillation terminal
5	IC(VPP)	-	Internal connection (connect to VSS1)
6	RESET	I	System reset input
7	SCK	I/O	Serial clock input/output of serial interface
8	RXD	I	Serial data input of serial interface
9	TXD	0	Serial data output of serial interface
10	POWERSW	Ι	Power switch (S1) input terminal
11	AVCO	0	AV Compulink output terminal
12	INTP	I/O	8 bit input/output port
13	P.ON	0	Power ON signal output
14	RESET	0	CPU Reset output
15	AVCI	I	AV Compulink input terminal
16	CS	I	Chip select input
17	REMO	I	Remote controller signal input
18	AVSS	-	Connect to ground for A/D converter
19	ANI3	I	Operation switch (S2,S3) input terminal
20	ANI2	I	Operation switch (S4~S7) input terminal
21	ANI1	-	Connect to ground
22	ANI0	-	Connect to ground
23	VSS0	-	Connect to ground for port section
24	AVDD	-	Standard voltage input for analog power supply of A/D converter
25	VDD0	-	Power supply terminal (+) for port section
26,27	STANDBYRED	0	Standby LED control signal output
28,29		-	Non connect
30,31	PRORED	0	Progressive LED control signal output (red)
32,33	PROGRN	0	Progressive LED control signal output (green)
34	AUDIOLED	-	Not use
35		-	
36		-	Non connect
37	INT/PROG	0	Interlace/progressive switch signal output
38		0	Muting control signal output
39~58	S24~S5	0	FL Segment control signal output
59	VDD2	-	Power supply terminal (+) for driver section
60	VLOAD	-	Connected to pull down resistor for FL driver
61~64	S4~S1	0	FL Segment control signal output
65~67		-	Non connect
68~80	13G~1G	0	FL Grid control signal output

■ NDV8601VWA(IC501):AV Decoder

1.Pin layout

2.Block diagram

3.Pin function (1/4)

		T	
Pin No.	Symbol	I/O	Description
1	VDDio	-	Power supply terminal 3.3V
2,3	MD10,11	I/O	SDRAM Data bus terminal
4	VDD	-	Power supply terminal 1.8V
5	MD12	I/O	SDRAM Data bus terminal
6	VSSio	-	Connect to ground
7~9	MD13~15	I/O	SDRAM Data bus terminal
10	VDDio	-	Power supply terminal 3.3V
11	DQM1	0	SDRAM Data byte enable
12,13	MA9,8	0	SDRAM Address bus terminal
14	VSSio	-	Connect to ground
15,16	MA7,6	0	SDRAM Address bus terminal
17	VSS	-	Connect to ground
18	MA5	0	SDRAM Address bus terminal
19	VDDio	-	Power supply terminal 3.3V
20,21	MA4,3	0	SDRAM Address bus terminal
22	MCLK	0	SDRAM Clock output
23	VSSio	-	Connect to ground
24	CKE	0	SDRAM Clock enable output
25,26	MA2,1	0	SDRAM Address bus terminal
27	VDDio	-	Power supply terminal 3.3V
28	MA0	0	SDRAM Address bus terminal
29	MA10	0	SDRAM Address bus terminal

3.Pin function (NDV8601VWA 2/4)

Pin No.	Symbol	I/O	Description
30	MA11	-	Non connect
31	VSSio	-	Connect to ground
32,33	MA12,13	0	SDRAM Address bus, reserved for terminal compatibility with 64Mb SDRAM
34	VDD	-	Power supply terminal 1.8V
35	CS0	0	SDRAM Primary bank chip select
36	VDDio	-	Power supply terminal 3.3V
37	RAS	0	SDRAM Command bit
38	CAS	0	SDRAM Command bit
39	WE	0	SDRAM Command bit
40	VSSio	-	Connect to ground
41	DQM0	0	SDRAM Data byte enable
42	DQM2	0	SDRAM Data byte enable
43	MD16	I/O	SDRAM Data bus terminal
44	VDDio		Power supply terminal 3.3V
45,46	MD17,18	I/O	SDRAM Data bus terminal
47	VSS	-	Connect to ground
48	MD19	I/O	SDRAM Data bus terminal
49	VSSio	1/0	Connect to ground
50~52		I/O	SDRAM Data bus terminal
50~52	MD20~22	1/0	
	VDDio	1/0	Power supply terminal 3.3V SDRAM Data bus terminal
54~56	MD23~25	I/O	
57	VSSio	-	Connect to ground
58~61	MD26~29	I/O	SDRAM Data bus terminal
62	VDDio	-	Power supply terminal 3.3V
63,64	MD30,31	I/O	SDRAM Data bus terminal
65	DQM3	0	SDRAM Data byte enable
66	CS1	0	SDRAM Extension bank chip select
67	VSSD	-	Connect to ground
68	SPDIF	0	S/PDIF Digital audio output terminal
69	VSSio	-	Connect to ground
70	AIN	I	Digital audio input for digital micro; can be used as GPIO
71	AOUT3	0	Serial audio output data to audio DAC for left and right channels for down-mix
72	AOUT2	0	Serial audio output data to audio DAC for surround left and right channels
73	AOUT1	0	Serial audio output data to audio DAC for center and LFE channels
74	AOUT0	0	Serial audio output data to audio DAC for left and right channels
75	VDDio	-	Power supply terminal 3.3V
76	PCMCLK	0	Audio DAC PCM sampling clock frequency, common clock for DACs and ADC
77	VDD	-	Power supply terminal 1.8V
78	ACLK	0	Audio interface serial data clock, common clock for DACs and AD converter
79	LRCLK	0	Left / right channel clock, common clock for DACs and ADC
80	SRST	0	Active low RESET signal for peripheral reset
81	RSTP	I	RESET_Power : from system, used to reset frequency synthesizer and rest
			of chip
82	VSSio	-	Connect to ground
83	RXD1	ı	UART1 Serial data input from external serial device, used for IR receiver
84	SSPIN1	I/O	SSP1 Data in or 16X clock for USART function in UART1
85	VSS	-	Connect to ground
86	SSPOUT1	I/O	SSP1 Data out or UART1 data-terminal-ready signal
87	SSPCLK1	I/O	SSP1 Clock or UART1 clear-to -send signal
88	SSPCLK0	I/O	SSP0 Clock or request-to-send function in UART1
89	VDD	-	Power supply terminal 1.8V
90	SSPIN0	I/O	SSP0 Data in or 16X clock for USART function in UART0
30	SOFINU	1/0	Set o Bata in or fox clock for Obarti function in Oartifu

3.Pin function (NDV8601VWA 3/4)

Pin No.	on (NDV8601V) Symbol	1/0	Description
	,	1/0	Power supply terminal 3.3V
91	VDDio	1/0	SSP0 Data out or UART0 data-terminal-ready signal
92 93	SSPOUT0	I/O I/O	UARTO Serial data output to an external serial device
	TXD0	1/0	UARTO Serial data output to an external serial device
94	RXD0	1/0	UARTO Senai data input from external senai device UARTO Clear-to-send signal
95	CTS0	1/0	
96	RTS0	I/O	UART0 Request-to-send signal
97	VSSio	-	Connect to ground
98	CXI		Crystal input terminal for on-chip oscillator or system input clock
99	CXO	0	Crystal output terminal for on-chip oscillator
100	OSCVSS	-	Connect to ground for oscillator
101	OSCVDD	-	Power supply terminal for oscillator 1.8V
102	MVCKVDD	-	Power supply terminal for main and video clock PLL 3.3V
103	SCEN	l	Scan chain test enable
104	MVCKVSS	-	Connect to ground for main and video clock PLL
105	ACLKVSS	-	Connect to ground for audio clock PLL
106	SCMD	I	Scan chain test mode
107	ACLKVDD	-	Power supply terminal for audio clock PLL 3.3V
108	VDDDAK	-	Power supply terminal for DAC digital 1.8V
109	VSSDAC	-	Connect to ground for DAC digital
110	Cr/R	0	Video signal output (Cr output : composite/component Red output)
111	IOM	0	Cascaded DAC differential output used to dump current into external resistor
			for power
112	C/Cb/B	0	Video signal output (Chrominance output for NTSC/PAL S-Video
			Cb output for component Blue output)
113	VAA3	-	Power supply terminal for DAC analog 3.3V
114	Y/G	0	Video signal output (Luminance for S-Video and component Green output)
115	VSSA	-	Connect to ground for DAC analog
116	VREF	-	Non connect
117	VAA	-	
118	CVBS/C	0	Video signal output (Composite video Chrominance output for S-Video)
119	RSET	0	Current setting resistor of output DACs
120	COMP	0	Compensation capacitor connection
121	VSS	-	Connect to ground
122	VCLK	-	Non connect
123	VSYNC	-	Non connect
124	HSYNC	-	Non connect
125	VDDio	-	Power supply terminal 3.3V
126~131	VI07~02	-	Non connect
132	VSSio	-	Connect to ground
133,134	VI01,00	-	Non connect
135	VDD	-	Power supply terminal 1.8V
136~139	AD31~28	I/O	Multiplexed address / data bus terminal
140	VDDio	-	Power supply terminal
141~144	AD27~24	I/O	Multiplexed address / data bus terminal
145	PWE3	I/O	Byte write enable for FLASH,EEPROM,SRAM or peripherals terminal
146	AD23	I/O	Multiplexed address / data bus terminal
147	VSSio	-	Connect to ground
148~153	AD22~17	I/O	Multiplexed address / data bus terminal
154	VDDio	-	Power supply terminal 3.3V
155	AD16	I/O	Multiplexed address / data bus terminal
156	PWE2	I/O	Byte write enable for FLASH,EEPROM,SRAM or peripherals terminal
157,158	AD15,14	1/0	Multiplexed address / data bus terminal
159	VDD	-	Power supply terminal 1.8V
1 174			LI OTTOL DUDDIN KULLILIU LIOV

3.Pin function (NDV8601VWA 4/4)

Pin No.	Symbol	I/O	Description
160	SCLK	0	External bus clock used for programmable host peripherals
161	ACK	I/O	Programmable WAIT/ACK/RDY control
162	VSSio	-	Connect to ground
163~168	AD13~8	I/O	Multiplexed address / data bus terminal
169	VDDio	-	Power supply terminal 3.3V
170	PWE1	I/O	Byte write enable for FLASH,EEPROM,SRAM or peripherals terminal
171	VSS	-	Connect to ground
172~176	AD7~3	I/O	Multiplexed address / data bus terminal
177	VSSio	-	Connect to ground
178~180	AD2~0	I/O	Multiplexed address / data bus terminal
181	VDDio	-	Power supply terminal 3.3V
182	PWE0	I/O	Byte write enable for FLASH,EEPROM,SRAM or peripherals terminal
183	ALE	I/O	Address latch enable
184~187	LA0~3	I/O	Latched address 0~3
188	VSSio	-	Connect to ground
189	RD	I/O	Read terminal
190	LHLDA	0	Bus hold acknowledge in slave mode
191	LHLD	Ĭ	Bus hold request from external master in slave mode
192	VDD	<u> </u>	Power supply terminal 1.8V
193	PCS0	0	Peripheral chip select 0, generally used for enabling the program store
100	1 030	~	ROM/FLASH
194,195	VI01 00	I/O	Programmable general purpose external input/output
194,195	XI01,02 VDDio	-	Power supply terminal 3.3V
197~200		I/O	Programmable general purpose external input/output
201	XI03~06	1/0	Connect to ground
	VSS	1/0	<u> </u>
202,203	XI07,08	I/O	Programmable general purpose external input/output
204	VSSio	-	Connect to ground
205	XI09	1/0	Programmable general purpose external input/output
206~209	XID10~13	I/O	Programmable general purpose external input/output
210	VDDio	- 1/0	Power supply terminal 3.3V
211	XID14	I/O	Programmable general purpose external input/output
212	VDD	<u> </u>	Power supply terminal 1.8V
213	DSYNC	<u> </u>	DVD Parallel mode sector sync
214	DREQ	0	DVD Parallel mode data request
215	DCLK		Data sampling clock
216	DSTB		Parallel mode data valid, serial mode left/right clock
217	DVD0		DVD Drive parallel data port
218	VSSio	-	Connect to ground
219~223	DVD1~5	I	DVD Drive parallel data port
224	VDDio	-	Power supply terminal 3.3V
225,226	DVD6,7	I	DVD Drive parallel data port
227	MD0	I/O	SDRAM Data bus terminal
228	VSSio	-	Connect to ground
229	MD1	I/O	SDRAM Data bus terminal
230	VSS	-	Connect to ground
200	MD2,3	I/O	SDRAM Data bus terminal
231,232	الالككري		
		-	Power supply terminal 3.3V
231,232 233	VDDio	- I/O	Power supply terminal 3.3V SDRAM Data bus terminal
231,232			1 '''

Glossary of term and abbreviations

(for AV Decoder section)

3D 3-dimension

A/V 1)audio/video 2)audio/visual

ac alternating current

ACLK audio serial-data (bit) clock

AD multiplexed address / data bus

ADC analog-to-digital converter

AIN digital audio input

ALE address latch enable

ANSI/SMPTE American National Standards Institute / Society of Motion Pictures and Television Engineers

AOP Audio Output Processor

AXCLK test-mode audio-PLL clock output

baud unit of signaling speed equal to one code element per second

Cb blue color difference component (in accordance with the CCIR 601 specifications)

CCIR Consultative Committee on International Radio

CD compact disc

CD-DA compact disc-digital audio

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

Cr red color difference component (in accordance with the CCIR 601 specifications)

CSS Content Scrambling System

CTS Clear To Send

CVBS Composite Video Blank and Sync

DAC Digital-to-Analog Converter

dc direct current

DEMUX DEMUX Engine

DSP Digital Signal Processing

DTS Digital Theater System

DVD Digital Versatile Disc

EAV End Active Video

EAV/SAV End Active Video / Start Active Video

EEI Enable Error Interrupt

EEPROM Electrically Erasable Programmable Read-Only Memory

FS FIFO Status

GPIO General Purpose Input/Output

HDCD High Definition Compatible Digital

HDTV High-Definition television

HSYNC Horizontal sync

I/O Input/Output

IEC International Electrotechnical Commission

IOM Current (I) Output Minus (complementary shared current path to Video DAC current paths)

IR infrared

ITU International Telecommunications Union

LA Latched Address Bus

LCLK oscillator clock (derived from internal crystal oscillator)

Lfe Low-frequency effect

LRCLK Left/Right clock

LSB Least Significant Bit

Mb Megabit

MB Megabyte

MCLK primary or master clock

MHz Megahertz

MIPS Million Instructions Per Second

MmCPU Mediamatics CPU (synonym for internal RISC CPU)

MP3 Moving Picture Experts Group Layer-3 Audio (audio file format / extension)

MPEG1 audio A digital audio format mainly used in video CDs. It is based on the moving picture expert group (MPEG1) format, a data compression technology.

MPEG2 audio

A digital audio format mainly used in Europe and Australia. It provides high quality, multi-channel audio of up to eight channels in the same was as Dolby Digital and DTS. It is based on the MPEG2 format, a data compression technology more improved than MPEG1

NOP No Operation

NTSC 1)National Television System Committee 2)Worldwide video standard in North America and Japan

NTSC-M Version of NTSC used in certain parts of the world (Brazil)

OSD On-screen display

PAL Phase alteration by line

PCM Pulse Code Modulation

PCMCLK PCM audio-data over-sampling clock

PCS 1)Picture Control and Size 2)Perpheral Chip Select

PLL Phase Lock Loop

PQFP Plastic Quad Flat Pack (Package)

PWM Pulse Width Modulator

r/w Read/Write access

RAM Random Access Memory

RGB Red-Green-Blue (color model)

RISC Reduced Instruction Set Computer

ROM Read-Only Memory

RXD Receive signal

RW Readable / Write able

SAV Start Active Video

SCART Syndicat des Constructeurs d'Appareils Radiorecepteurs et Televiseurs (connector used in Europe to connect many kinds of audiovisual equipment)

SCLK Secondary or slave clock

SDRAM Synchronous Dynamic Random Access Memory

S/PDIF Sony / Philips Digital Interface

S/PDIFCLK clock associated with the S/PDIF output

SRAM Static Random Access Memory

SSP Synchronous Serial Port

TXD transmit signal

UART Universal Asynchronous Receiver-transmitter

USART Universal Synchronous / Asynchronous Receiver / Transmitter

VGA Video Graphics Array

VIO Video Input / Output

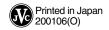
VREF Voltage REFerence

Vref Vertical reference

VSSA quiet analog ground

VSYNC Vertical sync

XBUS External peripheral bus


XIO External Input / Output

Y Luminance component (in accordance with the CCIR 601 specifications)

YCbCr Luminance component, blue color difference component, red color difference component (in accordance with the CCIR 601 specifications)

VICTOR COMPANY OF JAPAN, LIMITED
PERSONAL & MOBILE NETWORK BUSINESS UNIT
1644, Shimotsuruma, Yamato, Kanagawa 242-8514, Japan

